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There are several techniques available for vibration suppression of oscillatory systems.
However, application of these techniques may not cause a fast rate of decay. This paper
is part I of a comprehensive study which uses modal coupling to control vibrations in
oscillatory systems (see reference [1] for part II). A second order auxiliary oscillatory system
is used as the controller, coupled to the plant via non-linear coupling terms. In part I the
dynamics associated with the system is fully investigated using normal form theory.

Earlier studies on Modal Coupling Control (MCC) have resorted to perturbation
methods for design purposes. These studies were restricted to linear and undamped plants
using specific coupling terms. Also, the selection of controller parameters in these studies
was based on trial and error. In this work, by extending MCC to a general class of
non-linear systems with a damped or undamped oscillatory linear part, the trial and error
in parameter selection is eliminated. The general form of the coupling terms is derived and
a phenomenon called neck which is developed in the plant response upon applying the
proposed controller is introduced. In part II of this work the authors focus on the control
aspects of the method and use the neck phenomenon to define an algorithm for the
controller implementation. The controller is then applied to a piezo-actuated flexible beam.
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1. INTRODUCTION

In this article, an active control scheme is proposed that uses internal resonance to damp
out the vibrations of an oscillatory system. The proposed technique capitalizes on dynamic
modal coupling effects. A non-linear system may exhibit modal coupling effects if there
exits a state of internal resonance. Internal resonance may occur in a system of coupled
non-linear differential equations when natural frequencies of the system are
commensurable. That is, there exist constants {m1, m2, . . . , mn $Z} such that

m1w1 +m2w2 + · · ·+mnwn =0, (1)

where wj are the natural frequencies of the system.
In a state of internal resonance the commensurable modes of vibration are coupled via

an energy bridge which facilitates a continuous and periodic transfer of energy between
the modes. Theoretically, it seems possible to transfer energy from lightly damped to highly
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damped modes. In other words, the damping characteristics of lightly damped modes can
be changed indirectly through other damped modes.

The essence of a MCC design is to provide an energy link between an oscillatory
system that is to be controlled (plant) with an auxiliary system (controller). Under strong
coupling, energy is transferred back and forth between the plant and the controller. This
gives rise to a periodic amplitude modulation or beat phenomenon; and as a result, the
envelope of the plant and the controller responses become periodic. In MCC design the
oscillatory energy is transferred from the plant to the controller where it is subsequently
dissipated.

Modal coupling was first used in the area of control by Golnaraghi [2] and Golnaraghi
et al. [3]. The authors used modal coupling to control disturbance-induced oscillations in
a system. Tuer et al. [4] and Oueini and Golnaraghi [5] conducted theoretical and
experimental studies in the application of modal coupling control.

In all the above studies any damping in the plant and controller were ignored and the
amount of damping for an acceptable response of the plant was found using trial and error.
The initial conditions of the controller and other controller gains can change the
effectiveness of the controller drastically. However, previous studies did not address these
issues and they solely depended on trial and error to find the effect of the controller
parameters on MCC.

In references [6] and [7], using center manifold theory along with a normal form method,
the issues of MCC design in vibration suppression of a cantilever beam were addressed.
The controller was a mass–spring–dashpot mechanism which was free to slide along the
beam. The authors used the non-linear coupling terms of the equations to design a modal
coupling controller.

Khajepour et al. [8] used normal forms to derive a new relation that took into account
all the parameters (damping, controller gains and the plant initial conditions). When this
relation was used to find the controller initial values, simulation showed that an interesting
phenomenon called neck is established in the plant response. A neck phenomenon
corresponds to almost complete exchange of energy from the plant to the controller. This
phenomenon was used to suppress the vibrations of an oscillatory system.

In this paper a systematic approach to design a generalized modal coupling controller
is developed. Application of the normal form method enables one to address the main
drawbacks of previous studies which were explained earlier. In the following section
normal form methods are used to extend MCC to a broader class of non-linear systems
and to clarify the unaddressed issues in MCC design.

2. MCC DESIGN USING NORMAL FORM

One considers control of a general second order system. The governing plant equation
is defined in state space form as

ẋp =Apxp +Fp (xp )+Up , (2)

where xp =(xp1, xp2)T is the span of the plant state variables,

Ap =0 0
−w2

p

1
−2zpwp1, Fp (xp )=0f1(xp )

f2(xp )1, Up =00
up1. (3a, b)

The plant natural frequency and damping ratio are wp and zp respectively. The non-linear
terms are included in Fp (xp ) and Up is the plant input.
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The essence of a modal coupling controller design is to provide an energy link between
the plant and an auxiliary system (controller). Hence, the following system is introduced
as the controller:

ẋc =Acxc +Uc , (4)

where xc =(xc1, xc2)T is the span of controller state variables, and

Ac =0 0
−w2

c

1
−2zcwc1, Uc =00

uc1. (5a, b)

The feedback input is Uc and wc and zc (0E zc Q 1)† are the controller natural frequency
and damping ratio, respectively.

Defining x=(xp , xc )T, the closed loop system of (2) and (4) becomes

ẋ=Ax+F(xp )+U(x), (6)

where

A=0Ap

0
0
Ac1 (7)

and

F(xp )=0Fp (xp )
0 1, U(x)=0Up (x)

Uc (x)1. (8)

In order to generalize MCC using quadratic coupling terms, one considers Up (x) and
Uc (x) to be general second order functions in x. Furthermore, one assumes that 0E zp Q 1,
F(xp ) $ C3 and F(0)=DF(0)=0. This last assumption ensures that the origin is an
equilibrium point of equation (6).

As mentioned before, MCC relies on providing a strong coupling link between the plant
and the controller. This link does not exist for an arbitrary frequency ratio wp /wc or any
feedback inputs U(x). In the following normal form theory is used to derive the frequency
ratio and the feedback input that result in a strong energy link.

2.1.   

A system of differential equations can be written in a simpler form using the normal
form method. In general, the normal form method is a series of non-linear co-ordinate
transformations used to eliminate or simplify equation non-linearities. Although the
transformations are non-linear functions of the state variables, they are found by solving
a sequence of linear equations. The transformations are close to identity transformations
and therefore the linear part of the system does not change. This indicates that the structure
of the normal form equations depends only on the linear part of the system (references
[9, 10]).

† The values zc e 1 are excluded since the controller must be oscillatory in nature.
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To transfer equation (6) into normal forms, one first applies a linear transformation to
transform A into real Jordan canonical form. Defining G�(x)=F(xp )+U(x) and

T
 =diag 00 1
−wpzp

0
−wpbp1, 0 1

−wczc

0
−wcbc11, (9)

where bp =z1− z2
p and bc =z1− z2

c , equation (6), using x:T
 x , is transformed to†

ẋ=A
 x +G
 (x), (10)

where G
 (x)=T
 −1G�T
 x and A
 is

A
 =T
 −1AT
 =diag 00−wpzp

wpbp

−wpbp

−wpzp1, 0−wczc

wcbc

−wcbc

−wczc11. (11)

Since the linear part of equation (10) has complex eigenvalues, it is easier to calculate
the normal form equation using complex co-ordinates. Applying the complex
transformation, x=Tq where q=(q1, q̄1, q2, q̄2)T and

T= 1
2diag 00 1

−i
1
i1, 0 1

−i
1
i11, (12)

to equation (10), one obtains

q̇= J	 q+G	 (q), (13)

where J	 is J	 =T−1A
 T=diag (l1, l�1, l2, l�2), with

l1 =wp (−zp +ibp ), l2 =wc (−zc +ibc ), (14)

and G	 (q) is

G
 1(Tq)+ iG
 2(Tq)

G
 1(Tq)− iG
 2(Tq)
G	 (q)=G

G

G

F

f
G
 3(Tq)+ iG
 4(Tq)

G
G

G

J

j

. (15)

G
 3(Tq)− iG
 4(Tq)

Using the above transformation, it is clear that the second and fourth equations of (13)
are the complex conjugates of the first and third equations. Therefore, all one needs to
study is the two dimensional system

ż= Jz+G(z, z̄), (16)

where z=(q1, q2)T, J=diag (l1, l2) and G(z, z̄)= (G	 1(z, z̄), G	 3(z, z̄))T. So far, the linear
part of equation (2) has been simplified as much as possible.

A non-linear transformation is now used to simplify or even eliminate the non-linear
terms of (16). First, using the Taylor series, one expands G(z, z̄) about the origin so that
(16) becomes

ż= Jz+G2(z, z̄)+G3(z, z̄)+ · · · , (17)

† In order to have less confusion, the same variables are retained in the calculations.
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where Gj (z, z̄) represent the ith order term in Taylor expansion of G(z, z̄). The non-linear
co-ordinate transformation is introduced next†

z:z+ h2(z, z̄), (18)

where h2(z, z̄) is second order in z and z̄. Substituting equation (18) into equation (17) gives

(I+Dzh2(z, z̄))ż+Dz̄h2(z, z̄)z̄
.
= J(z+ h2(z, z̄))+G2(z, z̄)+O(3) (19)

or

ż=(I+Dzh2(z, z̄))−1(J(z+ h2(z, z̄))−Dz̄h2(z, z̄)z̄
.
+G2(z, z̄)+O(3)). (20)

Note that z̄
.
is the complex conjugate of (17) i.e.,

z̄
.
= J�z̄+G�2(z, z̄)+O(3). (21)

The inverse of (I+Dzh2(z, z̄)) exists for z, z̄ sufficiently small and can be represented in
a series expansion

(I+Dzh2(z, z̄))−1 = I−Dzh2(z, z̄)+O(2). (22)

Using equations (21) and (22), equation (20) becomes

ż= Jz+(Jh2(z, z̄)−Dzh2(z, z̄)Jz−Dz̄h2(z, z̄)J�z̄+G2(z, z̄))+O(3). (23)

Up to this point h2(z, z̄) has been arbitrary. However, one can choose h2(z, z̄) so as to
simplify the second order terms in G2(z, z̄) as much as possible. If h2(z, z̄) satisfies

Dzh2(z, z̄)Jz+Dz̄h2(z, z̄)J�z̄− Jh2(z, z̄)=G2(z, z̄), (24)

then all second order terms are eliminated from equation (23). In the following the solution
of equation (24) for the unknown function h2(z, z̄) is studied.

Equation (24) can be considered as a special case of a more general homological equation
(see Arnold [11]) of the form

LJ (hs (z, z̄))0Dzhs (z, z̄)Jz+Dz̄hs (z, z̄)J�z̄− Jhs (z, z̄)=Gs (z, z̄), (25)

where LJ ( · ) is a linear operator acting on the linear vector space of vector-valued
monomials of degree s.

Definition: Let {e1, . . . , en} be a basis of Cn (space of complex numbers), and let
{z1, . . . , zn , z̄1, . . . , z̄n} be co-ordinates with respect to this basis. Now let
zlz̄m = zl1

1 . . . zln
n z̄m1

1 . . . z̄mn
n be coefficients in this basis i.e.,

zlz̄mek =(zl1
1 . . . zln

n z̄m1
1 . . . z̄mn

n )ek , s
n

j=1

(lj +mj )= s, (26)

where lj , mj$N. These elements are called vector-valued monomials of degree s. The set
of all vector-valued monomials of degree s forms the linear vector space Hs . For instance
in C1 with coefficients z and z̄ the space H2 is the span of

{z2, zz̄, z̄2}. (27)

† We retain the same variable for simplicity.
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Definition: The set of eigenvalues l= {l1, . . . , ln , l�1, . . . , l�n} is said to be resonant if
among the eigenvalues there exists a relation of the form

ls = s
n

j=1

(ljlj +mjl�j ), (28)

where lj , mj $ N and

sn
j=1 (lj +mj )e 2.

Such a relation is called a resonance. The integer

s= sn
j=1 (lj +mj )

is called the order of resonance.
To solve equation (25) uniquely, the operator LJ ( · ) defined by

LJ (hs (z, z̄))=Dzhs (z, z̄)Jz+Dz̄hs (z, z̄)J�z̄− Jhs (z, z̄) (29)

should be invertible in Hs . One now shows that LJ ( · ) is invertible if the set of eigenvalues
of J and J� i.e., l= {l1, . . . , ln , l�1, . . . , l�n} are not resonant.

The authors base the argument on the case that J is diagonal. However, if J is not
diagonalizable (repeated eigenvalues), the following argument still holds with slight
differences (Arnold [9]). Let ek , 1E kE n, be an n-vector with 1 in the kth component and
zeros in the remaining components. Choosing {ek} as the basis of Cn, Hs will be the space
of all possible zlz̄mek . Using the fact that J is diagonal,

Jek = lkek , J�ek = l�kek , (30a, b)

the action of LJ ( · ) on each zlz̄mek will be

LJ (zlz̄mek )=Dz (zlz̄mek )Jz+Dz̄ (zlz̄mek )J�z̄− J(zlz̄mek )

=0s
n

j=1

ljlj + s
n

j=1

l�jmj − lk1zlz̄mek . (31)

Equation (31) shows that the representation of the linear operator LJ ( · ) with respect to
the chosen basis is diagonal with eigenvalues

s
n

j=1

(ljlj +mjl�j )− lk . (32)

Therefore, operator LJ ( · ) is not invertible if it has a zero eigenvalue for some k, i.e.,

lk = s
n

j=1

(ljlj +mjl�j ). (33)

That is, equation (25) can be solved uniquely and all non-linear terms of order s are
eliminated by a non-linear transformation (z:z+ hs (z, z̄)) if and only if no resonance of
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order s exists. Thus, the normal form equation of a non-linear system in the form of
equation (17) is

ż= Jz+Gr
2(z, z̄)+ · · ·+Gr

s (z, z̄)+ · · · , (34)

where Gr
s (z, z̄) are non-linear terms which are not eliminated due to resonance of order

s.
When a system is in resonance of order s, the equations are strongly coupled and the

effect of non-linear terms of order s cannot be ignored. Since in MCC design a strong
coupling between the plant and the controller is necessary, one must consider a controller
in which the plant and the controller exhibit a resonance.

For the two dimensional system (16), the resonance terms of order 2 are associated with
the zero eigenvalues of LJ ( · ),

lk = s
2

j=1

(ljlj +mjl�j ), (35)

where k ${1, 2} and

s2
j=1 (mj + lj )=2.

Substituting lj from equation (14) into equation (35) gives

lk =−(l1 +m1)wpzp −(l2 +m2)wczc +i((l1 −m1)wpbp +(l2 −m2)wcbc ). (36)

For k=1 where l1 =wp (−zp +ibp ), equation (36) holds if

(l1 +m1 −1)wpzp +(l2 +m2)wczc =0, (l1 −m1 −1)wpbp +(l2 −m2)wcbc =0, (37)

and for k=2 where l2 =wc (−zc +ibc ) (36) holds if

(l1 +m1)wpzp +(l2 +m2 −1)wczc =0, (l1 −m1)wpbp +(l2 −m2 −1)wcbc =0. (38)

In equations (37) and (38) only wp and zp are known and the rest are unknown. However,
since wp , wc$R+, zc , zp$[0, 1) and l1, l2, m1, m2 are in {0, 1, 2} the equations may not have
an admissible solution. Investigation for possible solutions indicates that equations (37)
and (38) have two solutions each which are listed in Table 1.

As seen in Table 1, equation (37) has a solution if zc =0 or zc = zp . However, the goal
is to suppress the vibration of a lightly damped system via transferring energy to the
controller and therefore zc should not be zero nor as small as zp . Thus, these two resonance
cases are not appropriate for the controller design.

The other case that causes resonance in equation (16) is when equation (38) is satisfied.
With the same reason the first solution of equation (38) is excluded from the resonance

T 1

Resonance cases of the solutions of equations (37) and (38)

( l1 l2 m1 m2 zc , zp wc , wp

1st solution of (37) 0 1 1 0 zc =0 wc =2wpbp

2nd solution of (37) 0 2 0 0 zc = zp wc = 1
2wp

1st solution of (38) 2 0 0 0 zc = zp wc =2wp

2nd solution of (38) 1 0 0 1 zp =0 wc =wp /(2bc )
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cases since zc = zp . The only resonance case in which zc is arbitrary is the second solution
of equation (38).

For this case LJ ( · ) has a zero eigenvalue and the associated resonance term is
zl1

1 zl2
2 z̄m1

1 z̄m2
2 = z1z̄2. The normal form equation of equation (16) with this resonance case is

ż= Jz+0 0
z1z̄21+O(3). (39)

When zp $ 0 all second order non-linearities in equation (16) can be eliminated. However,
the eigenvalue of LJ ( · ) corresponding to z1z̄2 using equation (31) is

wpzp +wp (bp −1), (40)

which tends to zero as zp:0. Equations (24) and (31) indicate that the unknown coefficient
of h2(z, z̄) associated with z1z̄2 is found by multiplying the coefficient of z1z̄2 in G2(z, z̄) and
the inverse of equation (40). Hence, for zp�1 elimination of z1z̄2 can lead to a large error
in the normal form equation. Thus, one considers equation (39) as the normal form
equation of equation (16) for zp =0 or zp�1.

So far, the normal form equation and the resonance terms of the transformed equation
(16) have been studied. The normal form and resonance terms of the original equation (6)
can now be determined using equation (39). Since the resonance term of the transformed
controller equation (39) is z1z̄2, any term in the controller (4) which leads to z1z̄2 after using
the transformations T
 and T is also a resonance term. Simple calculations show that there
are four terms which produce z1z̄2. Since in MCC design, resonance terms must be used
to make a strong energy link, the most general form of uc (x) is a linear combination of
these terms:

uc (x)= q1xp1xc1 + q2xp1xc2 + q3xp2xc1 + q4xp2xc2 = xT
p Qxc , (41)

where

Q=0q1

q3

q2

q41, (42)

and q1 . . . q4 are the controller feedback gains. It should be mentioned that since there is
only one complex resonance term (z1z̄2), q1 . . . q4 are not independent. However, for
simplicity one considers equation (41) as the controller feedback input.

At this point it is important to note that equation (39) shows that all second order
non-linearities of the plant (2) are eliminated. Using equation (41) in equation (4), the
controller equation remains the same (up to second order terms) if one considers the
transformation

xp = yp + h2(yp , yc ), xc = yc , (43a, b)

where yp and yc are the normal form subspaces spanned by the plant and the controller
state variables, and h2(yp , yc ) is second order in y. Therefore, the normal form equation
of equation (6) using equation (43) is

0ẏp

ẏc1=0Ap

0
0
Ac10yp

yc1+0 0
Uc (y)1+O(3). (44)
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Dropping higher order terms (O(3)) from equation (44) the normal form equation (44)
is written as

ẏp =Apyp , ẏc =Acyc +Uc (y). (45a, b)

Equation (45) with initial conditions obtained from equation (43) approximates the
original equation (6) in a neighborhood of the origin through second order terms. Note
that the approximated plant normal form equation (45a) is purely oscillatory and
independent from the second equation (45b). This implies that when zp =0, the plant
response has permanent oscillations regardless of what controller parameters are chosen.
This was observed experimentally by Oueini and Golnaraghi [5].

2.2.  

One now uses the approximated normal form equation (45) along with transformation
(43) to develop a new non-linear control strategy. In the closed loop system (6) the initial
conditions of the plant are known, and those of the controller are to be selected. One may
ask, what should the controller initial values be to yield the fastest decay in the plant
response? Equation (45) shows that when the initial conditions of the plant in the normal
form space are zero (yp (0)= (0, 0)) the response of the plant in the normal form space,
up to third order terms, is zero. This suggests a criterion for finding the controller initial
values in the physical space so that the plant initial values in the normal form space become
zero. One uses transformation (43) to achieve this task. Setting yp (0)= (0, 0), the equations

xp (0)= h2(0, yc (0)), xc (0)= yc (0), (46a, b)

are solved to obtain yc (0). Setting yp (0)=0 in equation (46) implies that one needs only
that part of the transformation h2( · ) that is solely a function of yc .

Recalling that the non-linear term Fp (xp ) in the plant equation (3b) is only a function
of xp , the transformation required to eliminate the second order terms of Fp (xp ) also
becomes a function of xp . Setting yp (0)=0 in equation (46) is independent to that part
of the transformation which is responsible for eliminating the second order terms of Fp (xp ).
In other words, this method is robust to the non-linearities of the plant. This is an
important observation revealing an advantage of the method for real applications.

Using this scheme to choose the controller initial conditions results in the maximum
transfer of energy from the plant to the controller. After derivation of h2( · ) so that the
controller initial conditions can be calculated, an example is solved in section 4 to obtain
a better understanding of this method.

3. DERIVATION OF THE NORMAL FORM TRANSFORMATION

The method that was introduced in the previous section is based on the selection of the
initial values of the controller so that the response of the plant in the normal form space
becomes zero (up to second order terms). One needs to set yp (0)=0 and solve equation
(46) for the controller initial conditions yc (0).

The controller input uc (x) (equation (41)) is the resonance terms of the system. The
authors now claim that the most general plant input up (x) is

up (xc )= p1x2
c1 + p2xc1xc2 + p3x2

c2. (47)

This claim is justified by the fact that yc (0) is found by setting yp (0)=0 in equation (46).
Any other second order terms in equation (47) are functions of xp and thus the non-linear
transformation required to eliminate these terms is also a function of xp (or yp ). Therefore,
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setting yp (0)=0 makes this part of the transformation zero. Hence, equation (47) is the
most general form of the plant input.

Knowing that yc (0) is independent of Fp (xp ), one considers

ẋp =Apxp +Up (xc ), ẋc =Acxc +Uc (x). (48a, b)

Transformation (43) eliminates the non-linearities of (48a). One now derives the exact form
of function h2(yc ) in equation (43). The non-linear part of equation (43), h2(yc ) as well
as yp (xc ) are both members of vector-valued monomials H2 in R2 with basis x2

c1, xc1xc2, x2
c2

(or y2
c1, yc1yc2, y2

c2). Therefore, they can be written as

up (xc )=PTXc , h2(yc )=0DTYc

D'TYc1, (49, 50)

where Xc , Yc and P, D, D' are

Xc =(x2
c1 xc1xc2 x2

c2)T, Yc =(y2
c1 yc1yc2 y2

c2)T, (51a, b)

P=(p1 p2 p3)T, D=(d1 d2 d3)T, D'= (d'1 d'2 d'3)T. (51c, d, e)

Taking the derivative of equation (43) and using equation (50), the transformed equation
(48a) becomes

ẏp =Apyp +Ap 0DTYc

D'TYc1+0 0
PTYc1−0DTD(Yc )Acyc

D'TD(Yc )Acyc1+O(3), (52)

where D(Yc ) is the Jacobian of Yc ,

D(Yc )= 22yc1

yc2

0

0
yc1

2yc23. (53)

To eliminate the second order terms of equation (52), D and D' should satisfy

Ap 0DTYc

D'TYc1+0 0
PTYc1−0DTD(Yc )Acyc

D'TD(Yc )Acyc1=0. (54)

Using equations (5a) and (53),

D(Yc )Acyc =BYc , (55)

where

B= 2 0
−w2

c

0

2
−2wczc

−2w2
c

0
1

−4wczc3. (56)

Now, substituting Ap from equation (3a) and using equation (55), equation (54) is solved
to yield

D'=BTD, D=(w2
pI+2wpzpBT +BTBT)−1P. (57a, b)
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When zp =0, d1 . . . d'3 are

d1 =w2
cC(9zcp1 −wc (3z2

c +2)p2 +3w2
czcp3), (58a)

d2 =2wcC((2+3z2
c )p1 −wczc (3z2

c −1)p2 +w2
c (3z2

c −2)p3), (58b)

d3 =C(3zcp1 +wc (2−3zc )p2 +w2
czcp3), (58c)

d'1 =2w3
cC(−(2+3z2

c )p1 +wczc (3z2
c −1)p2 +w2

c (2−3z2
c )p3), (58d)

d'2 =4w2
cC(zc (1−3z2

c )p1 −wc (2+ z2
c −3z4

c )p2 +3w2
czcb

2
c p3), (58e)

d'3 =2wcC((2−3z2
c )p1 −3wczcb

2
c p2 −w2

c (2− z2
c )p3), (58f)

where

C=1/[8w4
czc (4−3z2

c )]. (59)

Where zp $ 0 the elements of D and D' are given in Appendix A.
Transformation (43) with h2(yc ) as defined here can be used to obtain the controller

initial values in equation (46).

4. SIMULATION RESULTS

In this section simulation is used to illustrate the controller design method described in
section 3. The present results indicate that whenever the plant and controller are coupled
through the non-linear terms (41) and (47) and the controller initial conditions are found
from equation (46), a strong interaction develops between the systems.

As an example, consider equations (2) and (4) with f1(xp )=0 and

up = p2xc1xc2 + p3x2
c2, uc = q3xp2xc2 + q4xp2xc2. (60a, b)

Noticing that when f1(xp )=0, xp2 = ẋp1 and xc2 = ẋc1, the equations in second order form
can be written

ẍp1 +2wpzpẋp1 +w2
pxp1 =−Cẋ3

p1 −Kx3
p1 + up , (61a)

ẍc1 +2wczcẋc1 +w2
c xc1 = uc , (61b)

where −Cẋ3
p1 −Kx3

p1 represents the non-linearities of the system. For the sake of
simulation one chooses p2 =8, p3 =−3, q3 =−1, and q4 =0·4. Moreover, one sets
wc =wp /(2z1− z2

c ) so that equation (61) is in resonance.
System (61) is now simulated for the four cases defined in Table 2. The initial conditions

of the plant (61a) are assumed to be xp =(0·1, 0·2)T for all cases. Using (46a) with h2(yc )
defined in (50), the corresponding controller initial conditions are calculated for each case
and shown in Table 2. It should be noted that equation (46a) is second order in yc and
the controller initial conditions can be obtained from a closed form solution. There are

T 2

System parameters

Case wp zp zc C K xc1(0) ẋc1(0) wc =wp /(2z1− z2
c )

1 20 0 0·15 0 0 0·145 2·699 10·11
2 20 0·01 0·1 0·03 200 0·113 1·955 10·05
3 10 0 0·15 0 0 0·098 1·383 5·06
4 10 0·01 0·1 0·02 40 0·077 1·012 5·03
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Figure 1. Plant response for (a) case 1 and (b) case 2 of Table 2.

two solutions for each case. These solutions are only different in sign and therefore the
controller response, xc1(t) and ẋc1(t), using either solutions are the same except for a 180°
phase difference. However, the plant input is second order in xc1 and ẋc1, and therefore,
the plant response is not affected by the choice of either solution.

Figure 1(a) is the plant response xp1(t) for case 1. As seen in the figure, the plant response
decays to zero and then rises to steady state oscillations. The point of minimum responses
is called the neck and the time that the neck occurs neck time. The neck is an indication
of energy transformation from the plant to the controller and can be used as a means to
design a non-linear controller. The truncated normal form equations (45) do not predict
the existence of the neck. The neck is explained by the higher order terms which the authors
studied in reference [1]. The vertical lines in the figures show the neck times that are found
analytically in part II of this work.

Figure 1(b) is the simulation of system (61) for case 2 of Table 2 where the non-linear
terms are added to equation (61a). As seen in the figure the occurrence of the neck is not
affected by adding the non-linearities or by changing the controller damping. Figure 2(a)

Figure 2. Plant response for (a) case 3 and (b) case 4 of Table 2.
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demonstrates the response of the plant for case 3. In this case the plant is a simple linear
undamped system with wp =10 and the same behavior emerges in the plant response.

Finally one examines the case when the plant equation has damping and non-linearities
(case 4). Figure 2(b) is the plant response and shows that a neck exists for this general
case. In other words, the existence of the neck is independent of the controller or plant
damping as well as the system non-linearities.

5. CONCLUSION

This study provides a reliable analytical technique for modal coupling controller design.
Upon transferring a closed loop system of non-linear coupled differential equations to
normal form, most of the vague concepts associated with previous work on MCC strategy
were addressed. Furthermore, the general form of the coupling terms where the transfer
of energy is maximized was obtained.

Using system equations in the normal form space a new control scheme was introduced.
The proposed control scheme was shown to result in a phenomenon called neck which
corresponds to almost complete transfer of energy from the plant to the controller. In part
II [1] a relation for the time that the plant takes to reach the neck is derived. An algorithm
to implement the controller is also introduced. The controller is then examined using an
experimental piezo-actuated flexible beam.
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APPENDIX A: ELEMENTS OF D AND D' WHEN zp $ 0

When zp $ 0, equations (58) and (59) become

d1 =w2
cC((−4(4z4

c −3z2
c −1)z2

p −2bc (6z2
c +7)zpzc +9z2

c )p1

+ wc (−8zcb
2
cz

2
p +2bc (1+5z2

c )zp −(3z2
c +2)zc )p2 +w2

c (4b2
cz

2
p −6bczczp +3z2

c )p3),

(A.1)
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d2 =2wcC((8b2
czcz

2
p −2bc (5z2

c +1)zp + zc (2+3z2
c ))p1

+ wc (2bczc (2z2
c −1)zp − z2

c (3z2
c −1))p2 +w2

c (2b3
czp + zc (3z2

c −2))p3), (A.2)

d3 =C((4b2
cz

2
p −6zcbczp +3z2

c )p1 +wc (−2b3
czp + zc (2−3zc ))p2)

+ w2
c ((4b2

cz
2
p +2bczc (2z2

c −3)+ z2
c )p3), (A.3)

d'1 =2w3
cC((−8zcb

2
cz

2
p +2bc (5z2

c +1)zp − zc (2+3z2
c ))p1

+ wc (2bczc (1−2z2
c )zp + z2

c (3z2
c −1))p2 +w2

c (−2b3
czp + zc (2−3z2

c ))p3), (A.4)

d'2 =4w2
cC((−2bczc (1−2z2

c )zp + z2
c (1−3z2

c ))p1

+ wc (−4zcb
2
cz

2
p +2bc (1+3z2

c −2z4
c )zp − zc (2+ z2

c −3z4
c ))p2

+ w2
c (−2bczczp +3z2

cb
2
c )p3), (A.5)

d'3 =2wcC((−2b3
czp + zc (2−3z2

c ))p1 +wc (2bczczp −3z2
cb

2
c )p2

+ w2
c (−8zcb

2
cz

2
p +2bc (1+5z2

c −4z4
c )zp − zc (2− z2

c ))p3) (A.6)

and C is

C=(8w4
c (−8zcb

3
cz

3
p +4(1+3z2

c −6z4
c +2z6

c )z2
p −2bczc (4+2z2

c −3z4
c )zp

+ z2
c (4−3z2

c ))−1. (A.7)


